P120-Catenin Protects Endplate Chondrocytes From Intermittent Cyclic Mechanical Tension Induced Degeneration by Inhibiting the Expression of RhoA/ROCK-1 Signaling Pathway.
نویسندگان
چکیده
STUDY DESIGN The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. OBJECTIVE To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. SUMMARY OF BACKGROUND DATA ICMT can induce the endplate chondrocyte degeneration. However, the relationship between P120-catenin or RhoA/ROCK-1 signaling pathway and endplate chondrocytes degeneration induced by ICMT is not clear. METHODS ICMT (strain at 0.5 Hz sinusoidal curve at 8% elongation) was applied to rat endplate chondrocytes for 6 days, 16 hours a day. The cell viability and apoptosis were examined by the LIVE/DEAD assay and flow cytometry. Histological staining was used to examine the lumbar disc tissue morphology and extracellular matrix. To regulate RhoA/ROCK-1 signaling pathway and the expression of E-cadherin and P120-catenin, RhoA/ROCK-1 pathway-specific inhibitors, E-cadherin, and p120-catenin plasmid were applied. Coimmunoprecipitation was employed to examine the interaction between E-cadherin and P120-catenin, P120-catenin, and RhoA. The related gene expression and protein location was examined by realtime reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence. RESULTS There was no change of viability verified by LIVE/DEAD assay and flow cytometry after ICMT loading. ICMT loading led to RhoA/ROCK-1 signaling activation and the loss of the chondrogenic phenotype of endplate chondrocytes. Inhibition of RhoA/ROCK-1 signaling pathway significantly ameliorated the degeneration induced by ICMT. The expression of P120-catenin and E-cadherin were inhibited by ICMT. ICMT reduced the interaction between P120-catenin and E-cadherin. Furthermore, over-expression of P120-catenin and E-cadherin can suppress the expression of chondrogenic gene, over-expression of P120-catenin can suppress the RhoA/ROCK-1 signaling pathway, but over-expression of E-cadherin cannot do it. CONCLUSION P120-catenin protects endplate chondrocytes from ICMT Induced degeneration by inhibiting the expression of RhoA/ROCK-1 signaling pathway. LEVEL OF EVIDENCE N/A.
منابع مشابه
Intermittent cyclic mechanical tension altered the microRNA expression profile of human cartilage endplate chondrocytes
Previous studies have identified the association between cartilage endplate (CEP) degeneration and abnormal mechanical loading. Several studies have reported that intermittent cyclic mechanical tension (ICMT) regulates CEP degeneration via various biological processes and signaling pathways. However, the functions of microRNAs in regulating the cellular responses of CEP chondrocytes to ICMT rem...
متن کاملInvestigating Conversion of Endplate Chondrocytes Induced by Intermittent Cyclic Mechanical Unconfined Compression in Three-Dimensional Cultures
Mechanical stimulation is known to regulate the calcification of endplate chondrocytes. The ANK protein has a strong influence on anti-calcification by transports intracellular inorganic pyrophosphate (PPi) to the extracellular. It is known that TGF-β1 is able to induced Ank gene expression and protect chondrocyte calcification. Intermittent cyclic mechanical tension (ICMT) could induce calcifi...
متن کاملDegree of endplate chondrocyte degeneration in different tension regions during mechanical stimulation
The aim of this study was to explore the degree of degeneration of endplate chondrocytes in different tension regions induced by intermittent cyclic mechanical tension (ICMT) in vitro. Rat endplate chondrocytes were harvested and treated with 10% ICMT for 8 h/day with a frequency of 0.5 Hz. A cartilage degeneration model was induced using an FX‑5000T cell strain‑loading system. The experiment w...
متن کاملKnockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway.
PURPOSE To determine the signaling pathway involved in expanding contact-inhibited human corneal endothelial cells (HCECs) using p120 and Kaiso small interfering RNAs (siRNAs). METHODS Expansion of HCEC monolayers on collagen IV in SHEM using p120 siRNA was optimized regarding various dosage, frequency, and starting date before being added Kaiso siRNA or various inhibitors of Rho, ROCK, NFκB,...
متن کاملAn essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth
p120-catenin regulates epithelial cadherin stability and has been suggested to function as a tumor suppressor. In this study, we used anchorage-independent growth (AIG), a classical in vitro tumorigenicity assay, to examine the role of p120 in a different context, namely oncogene-mediated tumorigenesis. Surprisingly, p120 ablation by short hairpin RNA completely blocked AIG induced by both Rac1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Spine
دوره 41 16 شماره
صفحات -
تاریخ انتشار 2016